

VIVA

vanb’s Input Verification Assistant v2.0

User’s Guide

1

VIVA: vanb’s Input Verification

Assistant User's Guide

Table of Contents
Introduction ... 3

Disclaimer .. 3

Running VIVA .. 4

From the Command Line ... 4

Embedding VIVA in a Program .. 4

VIVA GUI ... 5

Patterns ... 7

Simple Patterns ... 7

Other Data Types ... 7

Constraint Constants .. 8

Constraint Operators .. 9

Repeating Patterns .. 10

Terminating Conditions .. 10

Terminating Condition: Count .. 10

Terminating Condition: Sentinel Value ... 11

Subscripts and Counts ... 11

Cumulative Conditions ... 12

Functions ... 12

Fixed Width Fields ... 14

Token Image .. 14

Parameters .. 15

Adding a Function ... 16

Appendix 1: Standard Function Reference .. 19

Scalar Functions .. 19

Vector Functions .. 21

Appendix 2: VIVA Pattern Examples ... 22

A: Balloons .. 22

B: Bit Counting ... 22

2

C: Data Recovery .. 23

D: Equal Angles ... 23

E: Maximum Square .. 24

F: Palindrometer .. 24

G: Profits .. 24

H: Roller Coaster ... 25

I: Skyline .. 25

J: Underground Cables .. 26

Appendix 3: Function Code Examples .. 27

PowerFunction ... 27

SumFunction ... 28

SquareRootFunction .. 30

3

Introduction

In running any computer programming contest, ensuring the accuracy of judge data can
be a challenge. The judges may write programs to solve the problems, which will reveal
some data errors, but still, some simple issues can go undetected, such as blank lines,
extra spaces, values outside of specified constraints, and so on. Many judges are
former competitors who write very robust programs, which are often immune to troubles
caused by such simple formatting and constraint errors. However, these kinds of issues
can cause problems with competitor’s code during the contest, causing, at best, extra
effort and delays by the judges during the contest, and at worst, incorrect judge
responses.

VIVA is vanb’s Input Verification Assistant. It takes a description of an input specification
in a simple language, and can then test input files to ensure that they conform to the
input specification.

Disclaimer

VIVA is intended as a tool to aid in the process of verifying judge input data, but not to
be the only step in that process. It is meant to augment your verification process, not to
replace it or reduce it. VIVA is only as good as the patterns written for it. In addition,
there are often complex relationships in data that cannot be represented in VIVA. The
author accepts no responsibility for errant judge data that passes a verification process
that includes VIVA.

VIVA

{

n (0<=n<=100);

}

19

34

102

4 2

1) First, describe your

input file using a simple

pattern description

language, and load it into

VIVA (VIVA will tell you

about any syntax errors).

2) Next, run VIVA

on your judge

input files.

3) VIVA will tell you

about any extra spaces,

extra characters on

lines, blank lines,

constraint violations, etc.

Extra blank(s) on
line 2

At line 3 token 1:
Failed constraint:
1 <= n && n <= 100

Unused tokens on
line 4

4

Running VIVA

There are currently three ways to use VIVA: from the command line, embedded in a
program, and via a VIVA GUI.

From the Command Line

VIVA is a Java application, so it must be run from the Java runtime environment.

java –jar viva.jar patternfile [inputfile]*

If the input files are omitted, VIVA will only parse the pattern file. If the pattern file is
omitted, VIVA will display a helpful message.

When run from the command line, VIVA produces an error code. This code is -2 for bad

usage (i.e. no parameters), or -1 if the pattern file fails to parse. Otherwise, VIVA will

return the number of files which failed validation (0 if all files passed).

Embedding VIVA in a Program

VIVA is a Java application, so it can easily be embedded in a Java program. VIVA is
entirely contained in the file viva.jar, which should be in the Java classpath.

First, create an instance of VIVA, using the constructor:

public VIVA()

Normally, VIVA will send its output to System.out, but it can be configured to send the

output to a stream of your choice. If you wish to use an output stream other than
System.out, use this method:

public void setOutputStream(PrintStream ps)

It is also possible to add your own functions to VIVA. It’s usually not necessary, since
VIVA’s included set of functions is fairly complete. However, if you’re going to add
functions, it should be done here, before parsing a pattern. This is an advanced topic
which will be covered in a later chapter. For completeness, the methods are listed here.

public void addFunction(ScalarFunction function)

public void addFunction(VectorFunction function)

The next two methods form the core of VIVA’s functionality: parsing a pattern, and
testing an input file. They may be repeated. The last pattern parsed will be applied to all
subsequent input files.

This method sets the active pattern in VIVA, and, as a consequence, parses the pattern.

public void setPattern(InputStream stream)

The last method tests an input file. It will return true if the input file passed, false if it

failed. Diagnostic messages will be written to System.out by default, or whatever

output stream has been specified.

public boolean testInputFile(String filename)

5

VIVA GUI

VIVA provides a very simple GUI. It also must be run with the Java runtime:

java –jar vivagui.jar

The interface looks like this:

The interface consists of four text fields and seven buttons.

The Pattern File and Input Files fields display the names of the pattern file and input

file (or files) currently selected. These text fields are navigable, but they are not editable.

Use the Load and Save As buttons to select a pattern file, and use the Identify button

to identify input file(s) for testing.

The text box with line numbers at the top right is the Pattern Editor. Here, you can

create and edit patterns.

The text box which consumes the lower half of the window is an Output box. This box

will display all of the messages from VIVA as a result of parsing patterns or testing input

files. Also, this box will show messages from the GUI confirming actions, or reporting

errors. It is also not editable.

6

Button Action Active / Inactive

Load Pops up a Pattern File Chooser

dialog to select a Pattern File. If

a file is chosen, the contents are

loaded into the Pattern Editor

and immediately parsed.

This button is always active.

Save Saves the contents of the

Pattern Editor to whatever file

was last specified in the Pattern

File Chooser through a Load or

Save As.

This button is active whenever the text in

the Pattern Editor is not consistent with

the specified Pattern File. It activates with

any change to the pattern in the Pattern

Editor, and deactivates with a successful

Load, Save or Save As.

Save As Pops up a Pattern File Chooser

dialog to select a Pattern File. If

a file is chosen, the contents of

the Pattern Editor are written to

that file.

This button is active whenever the text in

the Pattern Editor is not consistent with

the specified Pattern File. It activates with

any change to the pattern in the Pattern

Editor, and deactivates with a successful

Load, Save or Save As.

Parse Parses the pattern in the Pattern

Editor. If successful, this

becomes the pattern that will be

used to test input files.

This button is active whenever the text in

the Pattern Editor is not consistent with

the parsed pattern being used for testing.

It activates with any change in the Pattern

Editor, and deactivates on any successful

parsing.

Identify Pops up an Input File Chooser

to identify input files for testing.

This Chooser allows multiple

files to be chosen.

This button is always active.

Test Tests the identified input files by

running VIVA with the parsed

pattern on them. The results are

displayed in the Output box.

This button is active whenever the text in

the Pattern Editor has been successfully

parsed. It deactivates with any change in

the Pattern Editor.

Clear

Output

Erases all text in the Output box. This button is always active.

7

Patterns

The pattern specification is the heart of VIVA. VIVA offers a simple yet powerful syntax
which covers most of the patterns and constraints typically seen in judge input files.

Simple Patterns

The simplest pattern is just a variable, with constraints. It looks like this:

variable (constraints)

The constraints are optional. The variable name must conform to Java identifier
specifications, with one exception: Dollar signs (‘$’) are NOT allowed in variable names.

For example, these are all legitimate simple patterns:

x

n (n<3)

k (0<=k<=10, k!=5)

Without a type specification (described in the next section), the variables are assumed
to be integers. Multiple constraints may be given, separated by commas (‘,’).

Comparators can be chained; the constraint 0<=k<=10 is parsed as 0<=k && k<=10.

Multiple patterns can be put on the same line, terminated with a semicolon. This means
that all of the matching values in the input file must appear on the same line, with a
single space between them, and with no leading or trailing blanks. Constraints can use
any previously mentioned variable within scope. For example:

x (0<=x<=100) y (0<=y<=100);

m n (0<n<=20, n<m<=30);

p q (0<p<q<80) r (0<r<p*q);

Other Data Types

VIVA supports the following data types: int, integer, long, float, double, and

string. The first two, int and integer, are synonyms. If no type is specified,

integer is assumed. Specify a type by following the variable name with “:type” For

example:

x y:double z:string;

Means: Read three values: an integer, followed by a double, followed by a string. Input
strings can NOT contain spaces. For example, if an input line was:

1 2 3

The 1 would be interpreted as an integer, read into x.

The 2 would be interpreted as a double, read into y.

The 3 would be interpreted as a string, read into z.

8

Constraint Constants

The constants in constraints follow Java conventions. This table lists some examples:

Constant Type

19 integer

10000000000L long (lower case ‘l’ works, too)

10000000000 Parser Error (too big for integer, no ‘L’ for long)

0xAB integer (in hex)

0712 integer (in octal)

0281 Parser Error (8 is not an octal digit)

1.2 double

1E+10 double (lower case ‘e’ works, too)

19F float (lower case ‘f’ works, too)

“Hi There” string

“19” string

‘A’ integer, value is 65

VIVA does not support a char type, but it can accept char constants. They are

converted to their integer ASCII equivalents.

9

Constraint Operators

Constraints are expressions which evaluate to true or false. VIVA offers some

operators outside of the standard Java/C++ operators, and the precedence is different.
The following table describes VIVA’s operators, and their precedence, from low to high.

Precedence Level Operator Meaning

Logical OR || Logical OR

 ^^ Logical XOR

Logical AND && Logical AND

Comparator < Less than

 > Greater than

 <= Less than or equal to

 >= Greater than or equal to

 = Equal

 == Equal

 != Not equal

 <> Not equal

 %% Regular expression match

Add + Add

 - Subtract

 | Bitwise OR

 ^ Bitwise XOR

Multiply * Multiply

 / Divide

 % Modulus

 & Bitwise AND

 << Bit shift left

 >> Bit shift right, sign bit fill

 >>> Bit shift right, zero fill

Unary ! Logical NOT

 - Negation

 ~ Bitwise NOT

10

Some of the constraint operators behave differently on different data types. The
operators =, !=, <= and >= have an epsilon when used on floats or doubles. The

epsilon has a default value (0.000001) for both floats and doubles, but this default

value can be changed. For example:

x:double y:double (x!=y);

Means: Read two doubles, and make sure that they’re not within epsilon of each other.

Strings have a special operator, %%, which means “Match regular expression”. None of

the other comparator operators will work on a string. For example:

s:string (s %% “[ABC]+”);

Means: Read a string of As, Bs and Cs.

Repeating Patterns

Of course, most data sets don’t consist of just isolated data, most have patterns that
repeat. In VIVA, there are two kinds of repetition: repetition across a line (or lines) of
data, and repetition within a line of data. Repetition across a line (or lines) is specified
within curly braces (‘{}’), and repetition within a line is specified within angle brackets

(‘<>’). A sequence within braces (‘{}’) will repeat until end-of-file, and a sequence within

brackets (‘<>’) will repeat until end-of-line. For example:

{

 x y (0<x, 0<y);

}

Means: Read pairs of positive integers, one pair per line, until EOF.

<x (0<x)>;

Means: Keep reading positive integers until EOLN.

Terminating Conditions

Each of the repeating structures can be given a terminating condition. VIVA supports
two kinds of terminating conditions: by Count, and by Sentinel Value. Both are specified
immediately after the opening bracket/brace, within straight brackets (‘[]’).

Terminating Condition: Count

To specify a particular number of repetitions, follow the opening bracket/brace with:

[* integer expression]

The integer expression may be any mathematical formula built with VIVA constructs that
evaluates to an integer. Any previously input variable may be used. For example:

n (0<n<=20);

{[*n]

 x y (0<x, 0<y);

}

Means: Read an integer n, 0<n≤20. Then, read n lines of x’s and y’s.

11

<[*3] x y (-100<x<100, -100<y<100)>;

Means: Read exactly three ordered pairs on a single line.

n (0<n<=20) <[*n] x (0<x)>;

Means: Read an integer n, 0<n≤20, and then continue to read n positive integers on the

same line.

Terminating Condition: Sentinel Value

To specify a particular pattern which marks the end of the input sequence, follow the
opening bracket/brace with:

[= pattern]

The pattern may be any single-line VIVA pattern, including <> repetition. VIVA will read

the input and test against the sentinel pattern. If the sentinel pattern matches, VIVA will
exit the repetition. If the sentinel pattern fails, VIVA will reset the input to its state before
trying to match the sentinel pattern, and perform another repetition. For example:

{[= x y (x=y=0)]

 x y (0<x, 0<y);

}

Means: Keep reading lines with pairs of positive integers until you read a pair of 0s.

<[= s:string (s %% “END”)] s:string>;

Means: Read space-separated strings on a single line until you encounter the string
“END”.

Subscripts and Counts

Most data sets contain multiple values. VIVA can compare different values of the same
variable with subscripts, specified by following a variable in a constraint with straight
brackets (‘[]’). Subscripts are zero-based, and they reset each time a repetition begins.

For example:

x[0]

Means: Get the first value read for x in this scope.

The count of the number of values of that variable that have been read so far is also
available, by following the variable name with a pound/hash mark (‘#’). For example:

x#

Means: The number of values read for x so far.

{ x (0<=x<=5000, x#=1 || x[x#-2] < x[x#-1]); }

Means: Read values of x between 0 and 5000. If there’s more than one, make sure that

the last one is bigger than the next-to-last one. In other words, make sure that the
values of x are strictly increasing. Note that without the x#=1 construct, this constraint

would suffer a subscript-out-of-bounds error on the first iteration.

12

Cumulative Conditions

Sometimes, there is a need to check a constraint based on all of the input values taken
together, not just the individual values. VIVA can do this by putting a constraint in
straight brackets (‘[]’) at the end of either of the repeating constructs, {} or <>. For

example:

<[*3]

 x y (-100<=x<=100, -100<=y<=100)

[(y[1]-y[0])*(x[2]-x[0]) != (y[2]-y[0])*(x[1]-x[0])]>;

Means: Read a line with six integers, in three (x,y) pairs, and make sure that they don’t

violate the constraint.

That constraint ensures that point P0 is not equal to point P1, and that P0 is not equal to
P2, and that the slope from P0 to P1 is not the same as from P0 to P2, so that the three
points are not collinear. In other words, it ensures that the three points form a triangle.

Functions

VIVA has a number of useful built-in functions which can be used in constraints and
expressions. There is also a capability for users to add their own functions, which will be
discussed in a later section. VIVA has two types of functions: Scalar functions and
Vector functions. Scalar functions take simple values as parameters. Vector functions
take vectors of values as parameters, but still produce a scalar as a result. Some
examples of scalar functions:

length(s)

The length of a string. Will generate an error if s is not a string.

distance(x1,y2,y1,y2)

Distance from (x1,y1) to (x2,y2)

feps(f), deps(d)

These set the epsilon for floats or doubles. They always return true, so they can be

used like this:

x:double y:double (deps(1e-10), x!=y);

Setting an epsilon stays until the next change. So, in this case, double epsilon will be
1e-10 until the next deps() call, regardless of scope.

Vector Functions are functions that work on entire “vectors” of values in the tightest
enclosing context. All other values are considered scalars. Vector functions make the
most sense in Cumulative Constraints, but they can be used anywhere.

For example:

{ x (x>0); [sum(x)<10000] }

Read positive integers, one per line, until EOF. Make sure that their sum does not
exceed 10000.

13

{ x (x>0); [unique(x)] }

Read positive integers, one per line, until EOF. Make sure that no integer appears
twice. The unique() function takes any number (>0) of arguments of any type. It’s the

combination that’s checked for uniqueness.

For example:

{ x y (0<x, 0<y); [unique(x,y)] }

With this data:

5 6

5 5

6 5

6 6

6 5 This is the line that will violate the constraint.

Another vector function example:

{ x (x>0, sum(x)<5*x#); }

Read positive integers, one per line, until EOF. Make sure that, at every point, the sum
of the x’s is less than 5 times the number of x’s read so far.

Vector Functions work over the closest enclosing scope, regardless of parameters.

For example:

{[*3]

 n (0<=n<=10);

 {[*5]

 m (0<=m<=10);

 [sum(m) + sum(n) + sum(6) + sum(n#) + sum(m#) < 10000]}

[sum(4) + sum(n+m) < 100]}

Construct Value

sum(m) sum of m values, as expected.

sum(n) 5 * the current n value

sum(6) 5 * 6 = 30

sum(n#) 5 * the current count of the outer scope (1, 2 or 3, so it’s 5, 10 or 15)

sum(m#) 5 * 5 = 25

sum(4) 3 * 4 = 12

sum(n+m) Parsing error, since m is not in the outer scope.

14

Fixed Width Fields

Rather than space-separated tokens, some problems specify their data in terms of
fixed-width fields. VIVA has a construct to handle this: in the pattern, follow the variable
name with ‘@[integer expression]’. If the integer expression is omitted, VIVA

will read until the end-of-line. For example:

{ x@[5] y@[5] (0<x, 0<y); }

Means: Read pairs of positive integers, one pair per line, until EOF. Each integer is in a
5 character field. With the data:

••••1••••2

•••34••546

8273648596

This pattern would read x=1, y=5, then x=34, y=546, and finally x=82736, y=48596.

{ line:string@[]; }

Means: Read full lines of text until EOF.

VIVA also has a way of specifying a fixed-width field of whitespace. Instead of a variable
name, insert ‘@ integer expression @’ into the pattern. For example:

{ a:string@[5] @1@ y:string@[5]; }

Means: Read pairs strings, one pair per line, until EOF. Each string is in a 5 character
field, and there is 1 character between them which is ignored. The content of the
whitespace field is checked to see if it’s anything but whitespace, and an error is
reported if so.

Token Image

While most constraints are concerned with the value of an input, sometimes it is
desirable to check the image of an input – that is, the format of the text itself rather than
the value. This token image is available by putting a dollar sign (‘$’) after the variable

name in a constraint. Note that this construct is not compatible with subscripts. For
example:

x:double (x$ %% “(([1-9]\\d*)|0)\\.\\d\\d]”);

Means: Read a double, and make sure that it has exactly two decimal places, and that it
doesn’t start with a zero unless there’s only one digit to the left of the decimal point.

x@[5] (rjust(x$));

Means: Read an integer in a 5 character field, and make sure that it’s right-justified.

15

Parameters

There are several parameters governing VIVA’s behavior which can be set within a
VIVA pattern. Parameter values may be set at the beginning of the file, before any
patterns, using this syntax:

name1=value1 name2=value2 … #

There can be at most one set of ##’s in the file, and it must be the first construct in the

file. For example:

feps=0.01F deps=1e-7 #

Means: Set the floating point epsilon to 0.01, and the double epsilon to 0.0000001.

The following table describes the parameters available:

Name Type Default Acceptable Meaning

feps float 0.000001F 0.0 ≤ feps ≤ maxfloat Float Epsilon

deps double 0.000001 0.0 ≤ deps ≤ maxdouble Double Epsilon

ignoreeoln string “false” “true”, “false”, “t”,

“f”, “yes”, “no”, “y”,

“n”, “1”, “0”

Don’t complain about end-
of-line in a <> construct

with a terminating condition
(allow the data to run over
multiple lines)

ignoreblanks string “false” “true”, “false”, “t”,

“f”, “yes”, “no”, “y”,

“n”, “1”, “0”

Don’t complain about extra
blanks

maxerrs integer 25 0 ≤ maxerrs ≤ maxinteger The maximum number of
errors allowed before VIVA
gives up

eolnstyle string “system” “system”, “windows”,

“linux”, “mac”
Determine the acceptable
line separator.
windows = CRLF

linux = LF

mac = CR

system = Use the line

separator for the operating
system where VIVA is
running

eofstyle string “system” “system”, “windows”,

“linux”, “both”
Determine whether the last
line should end with a
newline.
windows = No

linux = Yes

both = Accept both

system = Use the

convention for the
operating system where
VIVA is running

16

Adding a Function

VIVA offers a wide range of standard functions, but should you need to add one of your
own, VIVA provides a mechanism for doing this.

First, decide whether your new function will be a Scalar function or a Vector function.
Remember, Scalar functions operate on individual values, whereas Vector functions
operate on lists of values. You will need to implement one of two interfaces, depending
on your choice: ScalarFunction or VectorFunction. There is also an abstract

class, ArithmeticFunction, which is an implementation of ScalarFunction. If

your function takes a single numeric parameter and returns a double, then extending
ArithmeticFunction is much simpler than implementing a ScalarFunction.

Both ScalarFunction and VectorFunction extend another interface called

Function. This is because they share some common methods. However, you should

not implement Function. You should implement either ScalarFunction or

VectorFunction, or extend ArithmeticFunction.

The following methods are common to both ScalarFunction and VectorFunction:

public String getName();

This method should return your function’s name, as it would appear in a VIVA pattern.

public String getUsage();

This method should return a helpful String to explain how your function should be used.
It will be given as part of the parser error if a user misuses your function.

public Class<?> getReturnType(Class<?> params[]);

This method should examine the types of the parameters that will be passed, and
determine the type that your function will return. It should return one of:
Double.class, Float.class, Integer.class, Long.class, String.class,

Boolean.class, or null if the parameters are in error.

The difference between a ScalarFunction and a VectorFunction lies in the

run() method. In a ScalarFunction, the run() method looks like this:

public Object run(VIVAContext context,

List<Object> parameters) throws Exception;

There will be one value passed for each of the parameters given.

In a VectorFunction, the run() method looks like this:

public Object run(VIVAContext context,

List<List<Object>> parameters) throws Exception;

The parameters will be a list of rows, and reach row will have one value for each
parameter given. For example, with the pattern:

{x y; [unique(x,y)]}

17

And the data:

1 2

3 4

1 3

4 5

6 3

The parameters lists of the run() method of the unique() function will get:

[[1, 2], [3, 4], [1, 3], [4, 5], [6, 3]]

Whether your function is a ScalarFunction or a VectorFunction, your run()

method should throw an Exception if the values passed are illegal (e.g. a negative

value to sqrt()).

If your function takes a single numeric argument and returns a double, then extending
ArithmeticFunction will be much simpler. ArithmeticFunction implements

most of the functionality necessary for such a function. There are only two things you
must do: set the name variable in a constructor, and implement the

implementation() method. The name variable is a String in

ArithmeticFunction, so setting it is a simple a matter of assigning it a value in your

constructor:

public NewFunction extends ArithmeticFunction

{

 name = “newf”;

}

The implementation method looks like this:

protected abstract double implementation(double parameter)

 throws Exception;

Just return the computed value, or throw any necessary Exception.

There is a pair of very useful static methods on the ArithmeticFunction class:

public static void nanCheck(double x, String how)

 throws Exception

public static void nanCheck(float x, String how)

 throws Exception

The nanCheck() methods that check the number parameter for NaN (Not a Number),

Infinity, and –Infinity. If the result is any of those, nanCheck() throws the appropriate

Exception. The String parameter how is used in the Exception to tell the user

exactly how the NaN, Infinity or –Infinity came about. These methods are public, so
they can be used in any function. They are not limited to extensions of
ArithmeticFunction.

18

Once your function is written, installing it is very easy. Simple call one of the
addFunction() methods on a VIVA object with a new instance of your function.

public void addFunction(ScalarFunction function)

public void addFunction(VectorFunction function)

ArithmeticFunction is an implementation of ScalarFunction. That means that

addFunction() will have no difficulties with any class you implement that extends

ArithmeticFunction.

Install the new function before performing any other action, such as parsing a pattern or
testing an input file. Note that in order to add a function, you must write a Java program
to drive VIVA. There is currently not a way to install new functions when using
command-line VIVA or the VIVA GUI.

19

Appendix 1: Standard Function Reference

The following functions are standard in VIVA. Note that numeric means any numeric

type: integer, long, float or double.

Scalar Functions

Signature Returns Description

acos(numeric) double ArcCosine

asin(numeric) double ArcSine

atan(numeric) double ArcTangent

atan2(dy,dx)

dy and dx can be any

numeric type

double ArcTangent of dy/dx, with special cases

handled. Equivalent to Java’s atan2()

concat(arg1,arg2,...)

can take any number of
parameters of any type

string String concatenation of toString() of

all arguments.

cos(numeric) double Cosine

cosh(numeric) double Hyperbolic Cosine

distance(x1,y1,x2,y2)

the four parameters can be
any numeric type

double Distance from (x1,y1) to (x2,y2)

exp(numeric) double Exponential (ex)

if(boolean,arg1,arg2)

arg1 and arg2 can be of

any type, but they must be of
the SAME type.

type of args If the boolean argument is true, returns

arg1, otherwise returns arg2.

length(string) integer Length of the string

ljust(string) boolean Returns true if the string is left-justified

(i.e. there are no leading blanks)

ln(numeric) double Natural logarithm

log10(numeric) double Logarithm base 10

20

log2(numeric) double Logarithm base 2

pow(numeric, numeric) double Power – first arg to the power of second

rjust(string) boolean Returns true if the string is right-justified

(i.e. there are no trailing blanks)

sin(numeric) double Sine

sinh(numeric) double Hyperbolic Sine

sqrt(numeric) double Square Root

tan(numeric) double Tangent

tanh(numeric) double Hyperbolic Tangent

test(arg1,arg2,...)

can take any number of
parameters of any type

boolean Debugging function which simply prints

out its arguments to the output stream.

Always returns true.

todegrees(numeric) double Convert Radians to Degrees

todouble(arg) double Convert to double

tofloat(arg) float Convert to float

tointeger(arg) integer Convert to integer

tolong(arg) long Convert to long

toradians(numeric) double Convert Degrees to Radians

tostring(arg) string Convert to string

21

Vector Functions

Signature Returns Description

concatall(arg1,arg2,...)

can take any number of
parameters of any type

string Concatenates all arguments across

all rows.

count(boolean) integer Counts all of the rows for which the

boolean expression is true.

decreasing(numeric) type of the

argument

Returns true if the sequence of

numbers is strictly decreasing. Does

NOT use epsilon.

increasing(numeric) type of the

argument

Returns true if the sequence of

numbers is strictly increasing. Does

NOT use epsilon.

nondecreasing(numeric) type of the

argument

Returns true if the sequence of

numbers is nondecreasing. Uses

epsilon for floats and doubles.

nonincreasing(numeric) type of the

argument

Returns true if the sequence of

numbers is nonincreasing. Uses

epsilon for floats and doubles.

sum(numeric) type of the

argument

Summation.

testall(arg1,arg2,...)

can take any number of
parameters of any type

boolean Debugging function which simply

prints out its arguments for all rows

to the output stream. Always returns

true.

unique(arg1,arg2,...)

can take any number of
parameters of any type

boolean Returns true if none of the rows in

the data are duplicates.

22

Appendix 2: VIVA Pattern Examples

The following examples are taken from the 2010 Southeast USA Regional Contest of
the ICPC. The input specification has been extracted from the problem statement,
verbatim, and the corresponding VIVA pattern is shown.

A: Balloons

There will be several test cases in the input. Each test case will begin with a line with
three integers:

 N A B

Where N is the number of teams (1 ≤ N ≤ 1,000), and A and B are the number of
balloons in rooms A and B, respectively (0 ≤ A,B ≤ 10,000). On each of the next N lines
there will be three integers, representing information for each team:

 K DA DB

Where K is the total number of balloons that this team will need, DA is the distance of
this team from room A, and DB is this team’s distance from room B (0 ≤ DA,DB ≤
1,000). You may assume that there are enough balloons – that is, Σ(K’s) ≤ A+B. The
input will end with a line with three 0s.

{[= n a b (n=a=b=0)]

 n (1<=n<=1000) a b (0<=a<=10000, 0<=b<=10000);

 {[*n]

 k da db (0<=da<=1000, 0<=db<=1000);

 [sum(k)<=a+b]}

}

B: Bit Counting

There will be several test cases in the input. Each test case will consist of three integers
on a single line:

 LO HI X

Where LO and HI (1 ≤ LO ≤ HI ≤ 1018) are the lower and upper limits of a range of
integers, and X (0 ≤ X ≤ 10) is the target value for K. The input will end with a line with
three 0s.

{[= lo:long hi:long x (lo=hi=x=0)]

 lo:long hi:long (1<=lo<=hi<=1000000000000000000L)

 x (0<=x<=10);

}

23

C: Data Recovery

There will be several test cases in the input. Each test case will begin with one line
containing two integers N and M (1 ≤ N,M ≤ 50), the dimension of the table. Then, the
next N lines will each contain M integers. Each integer will be either between 0 and 100
inclusive, or the value -1. After the N lines containing table entries, there will be two
more lines. The first line will contain N integers, each between 0 and 5,000 inclusive,
indicating the sum of each row in the table, from topmost row to the bottommost row.
The second line will contain M integers, each between 0 and 5,000 inclusive, indicating
the sum of each column in the table, from the leftmost column to the rightmost column.
The input will end with a line which contains two 0s.

{[= n m (n=m=0)]

 n m (1<=n<=50, 1<=m<=50);

 {[*n]

 <[*m] k (0<=k<=100 || k=-1)>;

 }

 <[*n] r (0<=r<=5000)>;

 <[*m] c (0<=c<=5000)>;

}

D: Equal Angles

There will be several test cases in the input. Each test case will consist of six integers
on a single line:

 AX AY BX BY CX CY

Each integer will be in the range from -100 to 100. These integers represent the three
points of the triangle: (AX,AY), (BX,BY) and (CX,CY). The points are guaranteed to
form a triangle: they will be distinct, and will not all lie on the same line. The input will
end with a line with six 0s.

{[= <[*6] x (x=0)>]

 <[*3]

 x y (-100<=x<=100, -100<=y<=100)

 [(y[1]-y[0])*(x[2]-x[0]) != (y[2]-y[0])*(x[1]-x[0])]>;

}

24

E: Maximum Square

There will be several test cases in the input. Each test case will begin with two integers,
N and M (1 ≤ N,M ≤ 1,000) indicating the number of rows and columns of the matrix.
The next N lines will each contain M space-separated integers, guaranteed to be either
0 or 1. The input will end with a line with two 0s.

{[= n, m (n=m=0)]

 n m (1<=n<=1000, 1<=m<=1000);

 {[*n]

 <[*m] k (k=0 || k=1)>;

 }

}

F: Palindrometer

There will be several test cases in the input. Each test case will consist of an odometer
reading on its own line. Each odometer reading will be from 2 to 9 digits long. The
odometer in question has the number of digits given in the input - so, if the input is
00456, the odometer has 5 digits. There will be no spaces in the input, and no blank
lines between input sets. The input will end with a line with a single 0.

{[= s:string (s %% “0”)]

 s:string (s %% “[0-9]+”, 2<=length(s)<=9);

}

G: Profits

There will be several test cases in the input. Each test case will begin with an integer N
(1 ≤ N ≤ 250,000) on its own line, indicating the number of days. On each of the next N
lines will be a single integer P (-100 ≤ P ≤ 100), indicating the profit for that day. The
days are specified in order. The input will end with a line with a single 0.

{[= n (n=0)]

 n (1<=n<=250000);

 {[*n]

 p (-100<=p<=100);

 }

}

25

H: Roller Coaster

There will be several test cases in the input. Each test case will begin with a line with
three integers:

 N K L

Where N (1 ≤ N ≤ 1,000) is the number of sections in this particular roller coaster, K (1 ≤
K ≤ 500) is the amount that Bessie’s dizziness level will go down if she keeps her eyes
closed on any section of the ride, and L (1 ≤ L ≤ 300,000) is the limit of dizziness that
Bessie can tolerate – if her dizziness ever becomes larger than L, Bessie will get sick,
and that’s not fun!

Each of the next N lines will describe a section of the roller coaster, and will have two
integers:

 F D

Where F (1 ≤ F ≤ 20) is the increase to Bessie’s total fun that she’ll get if she keeps her
eyes open on that section, and D (1 ≤ D ≤ 500) is the increase to her dizziness level if
she keeps her eyes open on that section. The sections will be listed in order. The input
will end with a line with three 0s.

{[= N K L (N=K=L=0)]

 N (1<=N<=1000) K (1<=K<=500) L (1<=L<=300000);

 {[*N]

 F (1<=F<=20) D (1<=D<=500);

 }

}

I: Skyline

There will be several test cases in the input. Each test case will consist of a single line
containing a single integer N (3 ≤ N ≤ 1,000), which represents the number of
skyscrapers. The heights of the skyscrapers are assumed to be 1, 2, 3, …, N. The input
will end with a line with a single 0.

{[= n (n=0)]

 n (3<=n<=1000);

}

26

J: Underground Cables

There will be several test cases in the input. Each test case will begin with an integer N
(2 ≤ N ≤ 1,000), which is the number of points in the city. On each of the next N lines will
be two integers, X and Y (-1,000 ≤ X,Y ≤ 1,000), which are the (X,Y) locations of the N
points. Within a test case, all points will be distinct. The input will end with a line with a
single 0.

{[= n (n=0)]

 n (2<=n<=1000);

 {[*n]

 x y (-1000<=x<=1000, -1000<=y<=1000);

 [unique(x,y)]}

}

27

Appendix 3: Function Code Examples

The following are examples of the Java code implementing functions. They illustrate
how new functions should be written.

PowerFunction

This class implements the pow() function.

public class PowerFunction implements ScalarFunction

{

 public String getName()

 {

 return "pow";

 }

 public Class<?> getReturnType(Class<?>[] params)

 {

 // If there are exactly two parameters, and they’re

 // both numbers, then this function will return a

 // Double. Otherwise, return ‘null’ to indicate

 // that the function isn’t being used correctly.

 return params.length==2

 && Number.class.isAssignableFrom(params[0])

 && Number.class.isAssignableFrom(params[1])

 ? Double.class : null;

 }

 public String getUsage()

 {

 return "pow(number,number)";

 }

 public Object run(VIVAContext context,

 List<Object> parameters) throws Exception

 {

 double argument =

 ((Number)parameters.get(0)).doubleValue();

 double exponent =

 ((Number)parameters.get(1)).doubleValue();

 double result = Math.pow(argument, exponent);

 ArithmeticFunction.nanCheck(result,

 "pow(" + argument + "," + exponent + ")");

 return result;

 }

28

SumFunction

This class implements the sum() function.

public class SumFunction implements VectorFunction

{

 public String getName()

 {

 return "sum";

 }

 public Class<?> getReturnType(Class<?>[] params)

 {

 // If there’s exactly one parameter, and it’s a

 // Number, then sum() will return that type.

 // Otherwise, sum() is not being used correctly,

 // so return null.

 // If you’re summing integers, it’ll return an integer.

 // Summing doubles returns a double, and so on.

 return params.length==1 &&

 Number.class.isAssignableFrom(params[0])

 ? params[0] : null;

 }

 public String getUsage()

 {

 return "sum(int or long or double or float)";

 }

29

 public Object run(VIVAContext context,

 List<List<Object>> parameters) throws Exception

 {

 // We’ve got to be able to handle any one

 // of 4 different types

 int intsum = 0;

 long longsum = 0L;

 double doublesum = 0D;

 float floatsum = 0F;

 Class<?> type = null;

 for(List<Object> row : parameters)

 {

 // There’s only one parameter per row

 Number addend = (Number)row.get(0);

 // Need to remember the type

 if(type==null) type = addend.getClass();

 if(type==Integer.class)

 intsum += addend.intValue();

 else if(type==Long.class)

 longsum += addend.longValue();

 else if(type==Double.class)

 doublesum += addend.doubleValue();

 else if(type==Float.class)

 floatsum += addend.floatValue();

 }

 ArithmeticFunction.nanCheck(doublesum, "sum()");

 ArithmeticFunction.nanCheck(floatsum, "sum()");

 Object value = null;

 if(type==Integer.class)

 value = new Integer(intsum);

 else if(type==Long.class)

 value = new Long(longsum);

 else if(type==Double.class)

 value = new Double(doublesum);

 else if(type==Float.class)

 value = new Float(floatsum);

 return value;

 }

}

30

SquareRootFunction

This class implements the sqrt() function. It provides an example of extending the

ArithmeticFunction class.

public class SquareRootFunction extends ArithmeticFunction

{

 public SquareRootFunction()

 {

 name = "sqrt";

 }

 protected double implementation(double parameter)

 throws Exception

 {

 if(parameter<0.0)

 {

 throw new Exception(

 "Parameter ("+parameter+") to sqrt() is <0");

 }

 return Math.sqrt(parameter);

 }

}

