
New Stuff for VIVA v2.2
Functional changes
Comparison operators and functions now also work on strings.

New numeric/comparison functions
Signature Returns Description
abs(numeric) Parameter Type Absolute Value

max(arg,arg,…)

can take any number of parameters of any
type, but they must all be of the same type

Parameter Type Maximum

maxall(arg,arg,…)

can take any number of parameters of any
type, but they must all be of the same type

Parameter Type Maximum (Vector function)

min(arg,arg,…)

can take any number of parameters of any
type, but they must all be of the same type

Parameter Type Minimum

minall(arg,arg,…)

can take any number of parameters of any
type, but they must all be of the same type

Parameter Type Minimum (Vector function)

New Global Value functions
Signature Returns Description
addtolist(id,value)

id and value can be any type

boolean Add the value to the id list

(It’s actually a set)

Always returns true

getdouble(id)

id can be any type

double Retrieve a stored double by id

getfloat(id)

id can be any type

float Retrieve a stored float by id

getint(id)

id can be any type

int Retrieve a stored integer by id

getlong(id)

id can be any type

long Retrieve a stored long by id

getstring(id)

id can be any type

string Retrieve a stored double by id

inlist(id,value)

id and value can be any type

boolean Determines if the value is in the id list

(It’s actually a set)

setdouble(id,double)

id can be any type

boolean Store a double by id

Always returns true

setfloat(id,float)

id can be any type

boolean Store a float by id

Always returns true

setint(id,integer)

id can be any type

boolean Store an integer by id

Always returns true

setlong(id,long)

id can be any type

boolean Store a long by id

Always returns true

setstring(id,string)

id can be any type

boolean Store a string by id

Always returns true

Graphs!
Signature Returns Description
graph(graph_id(,parameter)*)

graph_id must be a string

parameters must be specific strings

boolean Create a graph with the given graph_id

Parameters:

“directed” Directed graph

“undirected” *Undirected graph

“weighted” Weighted edges

“unweighted” *Unweighted edges

“multi” Allow duplicate edges

“nomulti” *No duplicate edges

“self” Allow self edges

“noself” *No self edges

“auto” addedge() can add nodes

“noauto” *addedge() fails if node

not already added

*These options are the defaults, and don’t need to
be specified. They are included only for
completeness, and in case they are dynamically
specified in the input.

Fails if contradictory parameters are given

Otherwise, always returns true

addnode(graph_id,node_id)

graph_id must be a string

node_id must be discrete (int, long or string)

boolean Add a node to the given graph

The set of nodes is, indeed, a set, so adding a
duplicate node is a no-op

Always returns true

addnodes(graph_id,start,end)

graph_id must be a string

start and end must be integers

boolean Add a list of nodes to the given graph, with
node_ids [start..end] inclusive

The set of nodes is, indeed, a set, so adding a
duplicate node is a no-op

Always returns true

addedge(graph_id,from,to[,weight])

graph_id must be a string

from and to must be discrete (int, long or string)

weight must be numeric

boolean Add an edge to the given graph.

Fails adding a weight to an unweighted graph

Fails not adding a weight in a weighted graph

If no errors, always returns true

components(graph_id) integer The number of connected components in the

graph_id must be a string graph

iscactus(graph_id)

graph_id must be a string

boolean true if the graph is a Cactus

isconnected(graph_id)

graph_id must be a string

boolean true if the graph is a single Connected

Component

isdag(graph_id)

graph_id must be a string

boolean true if the graph is a Directed Acyclic Graph

isdesert(graph_id)

graph_id must be a string

boolean true if the graph is a Desert (every Connected

Component is a Cactus)

isforest(graph_id)

graph_id must be a string

boolean true if the graph is a Forest (every Connected

Component is a Tree)

istree(graph_id)

graph_id must be a string

boolean true if the graph is a Tree

nonegcycles(graph_id)

graph_id must be a string

boolean Test if the graph has no negative cycles

Always true if the graph is unweighted (even if

the graph is undirected)

Fails if the graph is weighted and undirected

Fails if |𝑉| ∙ |𝐸| > 1,000,000

Otherwise, returns true if the graph has no

negative cycles

Testing for no negative cycles in an undirected
graph is NP-Complete.

The fastest algorithm for testing for negative
cycles uses Bellman/Ford, which is 𝑂(|𝑉| ∙ |𝐸|)

Note: Under some conditions, some of the Graph functions “Fail”. When this happens, they do not

simply return false. They print a message to the output stream, and VIVA stops processing for that

input file.

Here is a sample input statements from the recent 2020 NAC:

The first line contains two space-separated integers 𝑛 and 𝑞 (1 ≤ 𝑛, 𝑞 ≤ 2 ∙ 105), where 𝑛 is the number

of nodes in the tree and 𝑞 is the number of queries to be answered. The nodes are numbered from 1 to

𝑛.

Each of the next 𝑛 − 1 lines contains two space-separated integers 𝑢 and 𝑣 (1 ≤ 𝑢, 𝑣 ≤ 𝑛, 𝑢 ≠ 𝑣),

indicating an undirected edge between nodes 𝑢 and 𝑣. It is guaranteed that this set of edges forms a

valid tree.

Each of the next 𝑞 lines contains two space-separated integers 𝑟 and 𝑝 (1 ≤ 𝑟, 𝑝 ≤ 𝑛), which are the

nodes of the roots for the given query.

Here is a possible VIVA pattern for this input:
n q (1<=n<=200000, 1<=q<=200000, graph(“x”), addnodes(“x”,1,n));

{[*n-1]

 u v (1<=u<=n, 1<=v<=n, u!=v, addedge(“x”,u,v));

[istree(“x”)]}

{[*q]

 r p (1<=r<=n,1<=p<=n);

}

Note that is isn’t necessary to specify the constraints on 𝑢 and 𝑣, as addedge() will fail if any
of those constraints are violated. But, if addedge() fails, VIVA stops processing that file, so
this may be more graceful. Then again, if addedge() fails, its message is much more
informative.

